¹⁶N $β^-α$ decay **2016Re01**

Type Author Citation Literature C

Full Evaluation J. H. Kelley, J. E. Purcell and C. G. Sheu NP A968, 71 (2017)

1-Jan-

Parent: 16 N: E=0; J^{π} =2 $^{-}$; $T_{1/2}$ =7.13 s 2; $Q(\beta^{-}\alpha)$ =3259.0 23; $\%\beta^{-}\alpha$ decay=1.49×10 $^{-3}$ 5

¹⁶N-T_{1/2}: from Adopted Levels of ¹⁶N in ENSDF database.

¹⁶N-O(β ⁻α): from (2017Wa10).

result of (2016Re01).

2016Re01: XUNDL dataset compiled by TUNL, 2016.

The β -delayed α decay feeds $^{12}C_{g.s.}$ from $^{16}O^*(8871,9585,9845)$. While the total intensity to $^{16}O^*(8871)$ was found with a total β branch of 1.0% in (1959Al06,1984Wa07), these three states contribute only a tiny fraction of intensity in α decay to ^{12}C . The decay to $^{16}O^*(9585)$ proceeds entirely via α decay and dominates the delayed α spectrum. Three results are reported for this branch's intensity, $I\alpha=(1.20\ 5)\times 10^{-5}\ (1961Ka06)$, $(1.49\ 5)\times 10^{-5}\ (2016Re01)$, and $(1.3\ 3)\times 10^{-5}\ (1993Zh13)$. The result of (1961Ka06) was obtained by α and β counting the ^{16}N activity produced in the (p,n) activation of a flowing stream of CO_2 ; the results depended on the flow-rate, ^{16}N lifetime, relative detection efficiencies, etc.. In (2016Re01), the ^{16}N ions were implanted and identified in a segmented ΔE -E telescope at KVI. After implantation, the ^{16}N decayed and the decay α particles were counted. The branching ratio was determined by comparing the number of ^{16}N nuclei implanted into the detector with the number of α particles measured. The selection of a thin, high-granularity detector decreased the sensitivity of the measurement to ambiguous

Since the β -delayed α branching via $^{16}\text{O}*(9598)$ is the strongest, the branching ratios of $^{16}\text{O}*(8871,9845)$ reported in (1974Ne10,1969Ha42) were reported relative to the $^{16}\text{O}*(9585)$ β - α intensity given in (1961Ka06). In the original works I α =(4.6 9)×10⁻⁸% and (6.5 14)×10⁻⁷% were deduced for the branching ratios for delayed α emission from $^{16}\text{O}*(8871,9845)$, respectively (1974Ne10,1969Ha42) using I α (9585)=(1.20 5)×10⁻⁵ (1961Ka06). The revised values using the new I α (9598)=1.49×10⁻⁵ (2016Re01) are given below.

 β -particle pileup events; an important consideration since there are roughly $10^4 \beta$ particles for each α particle. We accept the

The α decay of $^{16}\text{O}^{-1}(8871)$ is parity forbidden, and detailed measurements of this decay branch have set limits on irregular parity amplitudes in the wavefunction (1961Ka06,1969Ha42,1970Jo25,1974Ne10). In (1974Ne10) Γ_{α} =(1.03 28)×10⁻¹⁰ eV is determined for $^{16}\text{O}^{+1}(8871)$.

In (2016Re01), significant discussion on the astrophysical impact is included.

¹²C Levels

 $\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi \dagger}}{0^{+}}$

† From Adopted Levels.

Delayed Alphas (12C)

E(α)	E(12C)	$I(\alpha)^{\dagger}$	E(16O)	Comments
1282.5 4	0.0	5.71×10 ⁻⁸ 11	8871	Inferred from present branching(9598)= 1.49×10^{-5} 5 and (1974Ne10).
1827.1 8	0.0	$1.49 \times 10^{-3} 5$	9598	
2011.9 4	0.0	8.1×10^{-7} 15	9845	Inferred from present branching(9598)= 1.49×10^{-5} 5 and (1969Ha42).

[†] Absolute intensity per 100 decays.

16 N $\beta^ \alpha$ decay 2016Re01

Decay Scheme

 $I(\alpha)$ Intensities: $I(\alpha)$ per 100 parent decays

